Comments

3-comments

FOLLOW ME

LATEST

3-latest-65px

About

This just a demo text widget, you can use it to create an about text, for example.

Testimonials

3-tag:Testimonials-250px-testimonial

Ads block

Banner 728x90px

Section Background

Section Background

Your Name


Your Message*

SEARCH

Makalah Pendidikan Matematika Rumus - Rumus Trigonometri

PENJUMLAHAN DUA SUDUT (a + b)

sin(a + b)  = sin a cos b + cos a sin b
cos(a + b) = cos a cos b - sin a sin b
tg(a + b )   = tg a + tg b
                 1 - tg2a


SELISIH DUA SUDUT
(a - b)

sin(a - b)  = sin a cos b - cos a sin b
cos(a - b) = cos a cos b + sin a sin b
tg(a - b )   = tg a - tg b
                 1 + tg2a


SUDUT RANGKAP

sin 2
a  = 2 sin a cos a
cos 2
a = cos2a - sin2 a
= 2 cos2
a - 1
= 1 - 2 sin2
a
tg 2
a  =  2 tg 2a 
            1 - tg2
a
sin
a cos a = ½ sin 2a
cos2
a = ½(1 + cos 2a)
sin2
a  = ½ (1 - cos 2a)

Secara umum :


sin n
a  = 2 sin ½na cos ½na
cos n
a = cos2 ½na - 1
= 2 cos2 ½n
a - 1
= 1 - 2 sin2 ½n
a
tg n
a =   2 tg ½na  
           1 - tg2 ½n
a

JUMLAH SELISIH DUA FUNGSI YANG SENAMA


BENTUK PENJUMLAHAN
® PERKALIAN

sin
a + sin b   = 2 sin a + b    cos a - b
                                2              2
sin
a - sin b   = 2 cos a + b    sin a - b
                                2             2
cos
a + cos b = 2 cos a + b    cos a - b
                                 2              2
cos
a + cos b = - 2 sin a + b   sin a - b
                                  2             2

BENTUK PERKALIAN
® PENJUMLAHAN

2 sin
a cos b = sin (a + b) + sin (a - b)
2 cos
a sin b = sin (a + b) - sin (a - b)
2 cos
a cos b = cos (a + b) + cos (a - b)
- 2 sin a cos b = cos (a + b) - sin (a - b)

PENJUMLAHAN FUNGSI YANG BERBEDA

Bentuk a cos x + b sin x

Merubah bentuk a cos x + b sin x ke dalam bentuk K cos (x -
a)

a cos x + b sin x = K cos (x-
a)
dengan :                     
             K = Öa2 + b2 dan tg a = b/a Þ a = ... ?

Kuadran dari a ditentukan oleh kombinasi tanda a dan b sebagai berikut

I
II
III
IV
a
+
-
-
+
b
+
+
-
-
keterangan :
a = koefisien cos x
b = koefisien sin x

PERSAMAAN
I. sin x = sin
a Þ x1 = a + n.360°
                         x2 = (180° -
a) + n.360°



    cos x = cos
a Þ x = ± a + n.360°


tg x = tg a
Þ x = a + n.180°    (n = bilangan bulat)

II. a cos x + b sin x = c
     a cos x + b sin x = C
            K cos (x-
a) = C
               cos (x-
a) = C/K
     syarat persamaan ini dapat diselesaikan
     -1
£ C/K £ 1 atau K² ³ (bila K dalam bentuk akar)

misalkan C/K = cos
b
  cos (x -
a) = cos b
        (x -
a) = ± b + n.360° ® x = (a ± b) + n.360°

y = a cos x + b sin x

a cos x + b sin x = K cos (x - a)

Maksimum = K ® bila cos (x - a) = 1
                               cos (x -
a) = cos 0°
                                            ® untuk x = a + n.360°

Minimum = -K ® bila cos (x - a) = -1
                              cos (x - a) = cos 180°

                        ® untuk x = a ± 180° + n.360°


NILAI PEMBUAT NOL FUNGSI (TITIK POTONG DENGAN SUMBU-x)

y = 0   
® bila cos (x-a) = 0
                    cos (x-a) = cos 90°

                ® untuk x = a ± 90° + n360°

grafik dibuat berdasarkan data-data diatas

 

Pengertian Limit

Untuk x mendekati harga tertentu dapat ditentukan nilai pendekatan dari f(x) yang merupakan limit (nilai Batas) dari f(x) tersebut.

CONTOH
:

Untuk x mendekati tak berhingga, maka f(a)
= 2/x akhirnya akan mendekati 0.

ditulis : l i m     2 = 0
           x ® ¥  x

Hasil yang harus dihindari


0/0 ; ¥/¥ ; ¥-¥ ; 0 (*) (bentuk tak tentu)

TEOREMA


1. Jika f(x) = c maka   l i m    f(x) = c
                                     x ® a

2. Jika l i m    f(x) = F   dan  l i m    g(x) = G   maka berlaku
           x ® a                     x ® a
a.  l i m   [f(x) ± g(x)] =  l i m   f(x)   ±   l i m   g(x) = F ± G
    x ® a
                      x ® a            x ® a

b. l i m   [f(x) g(x)] =  l i m   f(x) l i m   g(x) = F G
    x ® a
                     x ® a         x ® a

c. l i m   k f(x) =  k  l i m   f(x)  = k F
    x ® a
                  x ® a

                              l i m     f(x)
d. l i m     f(x) =  x ® a         = F
    x ® a  g(x)     l i m     g(x)     G
                            
x ® a


LANGKAH MENCARI LIMIT SUATU FUNGSI

1. Harga yang didekati disubstitusikan ke fangsi yang dimaksud.
   
Bila bukan (*) maka itulah nilai limitnya.

2. Bila (*) maka usahakan diuraikan.
    Pada fungsi pecahan, faktor yang sama pada pembilang dan     penyebut (penyebab bentuk (*)) dicoret. Pencoretan im boleh     dilakukan, karena x hanya mardekati harga yang diberikan. Kemudian     baru harga yang didekati disubstitusikan. Dalam konteks limit     perhatikan hasil pembagian berikut
:

0/a = 0 ; a/0 = ¥ ; ¥/a = ¥a/¥ = 0 ; ¥ ± a = ¥    (a = konstanta)

No comments:

Post a Comment

Archive

Sections

Blog Archive

Latest video-course

1-tag:Videos-800px-video

Campus

4-tag:Campus-500px-mosaic
TUTORIAL BLOG

Buka Semua | Tutup Semua

Header Background

Header Background
Header Background Image. Ideal width 1600px with.

Logo

Logo
Logo Image. Ideal width 300px.

Section Background

Section Background
Background image. Ideal width 1600px with.

Section Background

Section Background
Background image. Ideal width 1600px with.

Courses

6-latest-350px-course

About Me

Followers

Popular

Silahkan anda cari artikel disini

Pages

Hello! We’re Fenix Creative Photo Studio

Silahkan anda cari makalah disini
3-tag:Courses-65px

Popular Posts

Makalah Pendidikan Matematika Rumus - Rumus Trigonometri

PENJUMLAHAN DUA SUDUT (a + b)

sin(a + b)  = sin a cos b + cos a sin b
cos(a + b) = cos a cos b - sin a sin b
tg(a + b )   = tg a + tg b
                 1 - tg2a


SELISIH DUA SUDUT
(a - b)

sin(a - b)  = sin a cos b - cos a sin b
cos(a - b) = cos a cos b + sin a sin b
tg(a - b )   = tg a - tg b
                 1 + tg2a


SUDUT RANGKAP

sin 2
a  = 2 sin a cos a
cos 2
a = cos2a - sin2 a
= 2 cos2
a - 1
= 1 - 2 sin2
a
tg 2
a  =  2 tg 2a 
            1 - tg2
a
sin
a cos a = ½ sin 2a
cos2
a = ½(1 + cos 2a)
sin2
a  = ½ (1 - cos 2a)

Secara umum :


sin n
a  = 2 sin ½na cos ½na
cos n
a = cos2 ½na - 1
= 2 cos2 ½n
a - 1
= 1 - 2 sin2 ½n
a
tg n
a =   2 tg ½na  
           1 - tg2 ½n
a

JUMLAH SELISIH DUA FUNGSI YANG SENAMA


BENTUK PENJUMLAHAN
® PERKALIAN

sin
a + sin b   = 2 sin a + b    cos a - b
                                2              2
sin
a - sin b   = 2 cos a + b    sin a - b
                                2             2
cos
a + cos b = 2 cos a + b    cos a - b
                                 2              2
cos
a + cos b = - 2 sin a + b   sin a - b
                                  2             2

BENTUK PERKALIAN
® PENJUMLAHAN

2 sin
a cos b = sin (a + b) + sin (a - b)
2 cos
a sin b = sin (a + b) - sin (a - b)
2 cos
a cos b = cos (a + b) + cos (a - b)
- 2 sin a cos b = cos (a + b) - sin (a - b)

PENJUMLAHAN FUNGSI YANG BERBEDA

Bentuk a cos x + b sin x

Merubah bentuk a cos x + b sin x ke dalam bentuk K cos (x -
a)

a cos x + b sin x = K cos (x-
a)
dengan :                     
             K = Öa2 + b2 dan tg a = b/a Þ a = ... ?

Kuadran dari a ditentukan oleh kombinasi tanda a dan b sebagai berikut

I
II
III
IV
a
+
-
-
+
b
+
+
-
-
keterangan :
a = koefisien cos x
b = koefisien sin x

PERSAMAAN
I. sin x = sin
a Þ x1 = a + n.360°
                         x2 = (180° -
a) + n.360°



    cos x = cos
a Þ x = ± a + n.360°


tg x = tg a
Þ x = a + n.180°    (n = bilangan bulat)

II. a cos x + b sin x = c
     a cos x + b sin x = C
            K cos (x-
a) = C
               cos (x-
a) = C/K
     syarat persamaan ini dapat diselesaikan
     -1
£ C/K £ 1 atau K² ³ (bila K dalam bentuk akar)

misalkan C/K = cos
b
  cos (x -
a) = cos b
        (x -
a) = ± b + n.360° ® x = (a ± b) + n.360°

y = a cos x + b sin x

a cos x + b sin x = K cos (x - a)

Maksimum = K ® bila cos (x - a) = 1
                               cos (x -
a) = cos 0°
                                            ® untuk x = a + n.360°

Minimum = -K ® bila cos (x - a) = -1
                              cos (x - a) = cos 180°

                        ® untuk x = a ± 180° + n.360°


NILAI PEMBUAT NOL FUNGSI (TITIK POTONG DENGAN SUMBU-x)

y = 0   
® bila cos (x-a) = 0
                    cos (x-a) = cos 90°

                ® untuk x = a ± 90° + n360°

grafik dibuat berdasarkan data-data diatas

 

Pengertian Limit

Untuk x mendekati harga tertentu dapat ditentukan nilai pendekatan dari f(x) yang merupakan limit (nilai Batas) dari f(x) tersebut.

CONTOH
:

Untuk x mendekati tak berhingga, maka f(a)
= 2/x akhirnya akan mendekati 0.

ditulis : l i m     2 = 0
           x ® ¥  x

Hasil yang harus dihindari


0/0 ; ¥/¥ ; ¥-¥ ; 0 (*) (bentuk tak tentu)

TEOREMA


1. Jika f(x) = c maka   l i m    f(x) = c
                                     x ® a

2. Jika l i m    f(x) = F   dan  l i m    g(x) = G   maka berlaku
           x ® a                     x ® a
a.  l i m   [f(x) ± g(x)] =  l i m   f(x)   ±   l i m   g(x) = F ± G
    x ® a
                      x ® a            x ® a

b. l i m   [f(x) g(x)] =  l i m   f(x) l i m   g(x) = F G
    x ® a
                     x ® a         x ® a

c. l i m   k f(x) =  k  l i m   f(x)  = k F
    x ® a
                  x ® a

                              l i m     f(x)
d. l i m     f(x) =  x ® a         = F
    x ® a  g(x)     l i m     g(x)     G
                            
x ® a


LANGKAH MENCARI LIMIT SUATU FUNGSI

1. Harga yang didekati disubstitusikan ke fangsi yang dimaksud.
   
Bila bukan (*) maka itulah nilai limitnya.

2. Bila (*) maka usahakan diuraikan.
    Pada fungsi pecahan, faktor yang sama pada pembilang dan     penyebut (penyebab bentuk (*)) dicoret. Pencoretan im boleh     dilakukan, karena x hanya mardekati harga yang diberikan. Kemudian     baru harga yang didekati disubstitusikan. Dalam konteks limit     perhatikan hasil pembagian berikut
:

0/a = 0 ; a/0 = ¥ ; ¥/a = ¥a/¥ = 0 ; ¥ ± a = ¥    (a = konstanta)

Share

Post a Comment