Comments

3-comments

FOLLOW ME

LATEST

3-latest-65px

About

This just a demo text widget, you can use it to create an about text, for example.

Testimonials

3-tag:Testimonials-250px-testimonial

Ads block

Banner 728x90px

Section Background

Section Background

Your Name


Your Message*

SEARCH

Makalah Pendidikan Matematika Rumus - Rumus Trigonometri

PENJUMLAHAN DUA SUDUT (a + b)

sin(a + b)  = sin a cos b + cos a sin b
cos(a + b) = cos a cos b - sin a sin b
tg(a + b )   = tg a + tg b
                 1 - tg2a


SELISIH DUA SUDUT
(a - b)

sin(a - b)  = sin a cos b - cos a sin b
cos(a - b) = cos a cos b + sin a sin b
tg(a - b )   = tg a - tg b
                 1 + tg2a


SUDUT RANGKAP

sin 2
a  = 2 sin a cos a
cos 2
a = cos2a - sin2 a
= 2 cos2
a - 1
= 1 - 2 sin2
a
tg 2
a  =  2 tg 2a 
            1 - tg2
a
sin
a cos a = ½ sin 2a
cos2
a = ½(1 + cos 2a)
sin2
a  = ½ (1 - cos 2a)

Secara umum :


sin n
a  = 2 sin ½na cos ½na
cos n
a = cos2 ½na - 1
= 2 cos2 ½n
a - 1
= 1 - 2 sin2 ½n
a
tg n
a =   2 tg ½na  
           1 - tg2 ½n
a

JUMLAH SELISIH DUA FUNGSI YANG SENAMA


BENTUK PENJUMLAHAN
® PERKALIAN

sin
a + sin b   = 2 sin a + b    cos a - b
                                2              2
sin
a - sin b   = 2 cos a + b    sin a - b
                                2             2
cos
a + cos b = 2 cos a + b    cos a - b
                                 2              2
cos
a + cos b = - 2 sin a + b   sin a - b
                                  2             2

BENTUK PERKALIAN
® PENJUMLAHAN

2 sin
a cos b = sin (a + b) + sin (a - b)
2 cos
a sin b = sin (a + b) - sin (a - b)
2 cos
a cos b = cos (a + b) + cos (a - b)
- 2 sin a cos b = cos (a + b) - sin (a - b)

PENJUMLAHAN FUNGSI YANG BERBEDA

Bentuk a cos x + b sin x

Merubah bentuk a cos x + b sin x ke dalam bentuk K cos (x -
a)

a cos x + b sin x = K cos (x-
a)
dengan :                     
             K = Öa2 + b2 dan tg a = b/a Þ a = ... ?

Kuadran dari a ditentukan oleh kombinasi tanda a dan b sebagai berikut

I
II
III
IV
a
+
-
-
+
b
+
+
-
-
keterangan :
a = koefisien cos x
b = koefisien sin x

PERSAMAAN
I. sin x = sin
a Þ x1 = a + n.360°
                         x2 = (180° -
a) + n.360°



    cos x = cos
a Þ x = ± a + n.360°


tg x = tg a
Þ x = a + n.180°    (n = bilangan bulat)

II. a cos x + b sin x = c
     a cos x + b sin x = C
            K cos (x-
a) = C
               cos (x-
a) = C/K
     syarat persamaan ini dapat diselesaikan
     -1
£ C/K £ 1 atau K² ³ (bila K dalam bentuk akar)

misalkan C/K = cos
b
  cos (x -
a) = cos b
        (x -
a) = ± b + n.360° ® x = (a ± b) + n.360°

Limit Fungsi Trigonometri 
KETENTUAN

Untuk x <<< ( x
® 0 ) maka sin x » x
(x <<< kecil sekali ; » setara )

 l i m    sin x = 1             l i m   tg x = 1
x ® 0     x 
                   x ® 0    x
 l i m       x    = 1            l i m        x    = 1
x ® 0   sin  x 
                x ® 0     tg x

PERLUASAN
 l i m    sin ax = a/b       l i m     tg ax = a/b
x ® 0     bx 
                x ® 0     bx

 l i m       ax    = a/b       l i m       ax   = a/b

x ® 0   sin bx 
                x ® 0  tg bx

 l i m    sin ax = a/b       l i m     tg ax = a/b
x ® 0   sin bx 
                x ® 0 tg bx


 l i m    sin ax = a/b       l i m     tg ax = a/b
x ® 0   tg bx 
              x ® 0    sin bx

Rumus-rumus trigonometri yang sering digunakan untuk merubah fungsi:

cos x = sin (90° - x)
ctg x = tg (90° - x)
sin ax = 2 sin ½ax cos ½ax

cos ax = 1- 2 sin² ½ax
cos²x = 1 - sin²x



HAL-HAL KHUSUS


 l i m    axm + bxm-1 + ....   =
x ® ¥   pxn + qxn-1 + ...
¥    untuk m > n ;
a/p untuk m =n ;
0    untuk m < n
                                                   
l i m    Öax2 + bx + c  -    Ödx2 + ex + f
x ® ¥   
¥    untuk a > d ;
b-e untuk m =n ;
2Öa
-¥    untuk a < d
Bila salah satu suku belum berbentuk tanda akar maka dibentuk dengan cara mengkuadratkan kemudian menarik tanda akar.


DALIL L'HOSPITAL

Jika fungsi f dan g masing-masing terdifferensir pada titik x= a
dan f(a) = g(a) = 0 atau f(a) = g(a) = ¥ maka

 l i m    f(x)   = l i m    f(x)
x ® ¥  g(x)     x ® a   g(x)       


CONTOH LIMIT FUNGSI ALJABAR


1.  l i m   x2 - 5x + 6 = (3)2 - 5(3) + 6 = 0 
    x ® 3

2.  l i m    3x - 2   =  ¥   (*) Uraikan
    x ® ¥  2x + 1       ¥     

                 
x(3 - 2/x) = 3 - 2/x = 3 - 0 = 3
                 
x(2 - 1/x)    2 + 1/x   2 - 0    2
    
                 atau langsung gunakan hal khusus

3.  l i m    x2 - x - 1   =  ¥   (*) Uraikan
    x ® ¥   10x + 9         ¥     

                 
x(x - 1 - 1/x) = x - 1 - 1/x = ¥ - 1 - 0 = ¥ =¥
                 
x(10 - 9/x)       10 + 9/x        10 + 0      10

                 atau langsung gunakan hal khusus


4.  l i m    x2 - 3x + 2   =  0   (*) Uraikan
    x ® 2   x2 - 5x + 6       0    

                 
(x - 1)(x - 2) = (x - 1) = 2 - 1 = -1
                 (x - 3)(x - 2) = (x - 3) = 2 - 3

                 atau langsung gunakan hal khusus ® Differensial


5.  l i m    x3 - 3x2 + 3x - 1   =  0   (*) Uraikan
    x ® 1       x2 - 5x + 6           0    

                 
     (x - 1)3     = (x - 1)2 = (1 - 1)2 = 0
                 
(x - 1) (x - 5)     (x + 5)     (1 + 5)     6

                 atau langsung gunakan hal khusus ® Differensial


                                    
6.  l i m    Ö2 + x - Ö2x   =  0   (*) Hilangkan tanda akar dengan
    x ® 2       x - 2            0         mengalikan bentuk sekawan

                 
     (x - 1)3     = (x - 1)2 = (1 - 1)2 = 0 = 0
                 
(x - 1) (x - 5)     (x + 5)     (1 + 5)     6

                 atau langsung gunakan hal khusus ® Differensial


                                        
7.  l i m   (3x - Ö9x2 + 4x)  = ¥ - ¥  (*) Hilangkan tanda akar
    x ® ¥       
                                                              
     l i m   (3x - Ö9x2 + 4x )  = é 3x - Ö9x2 + 4x ù =  (*) Hilangkan tanda
    x ®  ¥   ë 3x - Ö9x2 + 4x  û             akar

     l i m   (9x2 - (9x2 + 4x)  = l i m            -4x                =
    x ®  ¥    3x + Ö(9x2 + 4x)      x ®  ¥ 3x + 3x Ö[1+(a/9x)]

     l i m            -4             = -4 = -2
    x ®  ¥    3 + 3Ö(1 + 0)             6     3

                 atau langsung gunakan hal khusus

CONTOH LIMIT FUNGSI TRIGONOMETRI

1. l i m   sin 2x = 0 (*)
   x ® 0  tg 3x     0

              sin 2x = 3x    2 = 1 . 1 . 2 = 2
              2x     tg 3x 3             3    3

2. l i m   1 - cos 2x = 0
   x ® 0      sin 2x      0

               1 - (1 - 2 sin² 2x) =      2 sin² x   =  sin x = tg x = 0
               2 sin x cos x        2 sin x cos       cos x

3. l i m   1 - cos x = 0
   x ® 0       3x²      0

               2 sin² (½x) = sin (½x) . sin (½x) = 1 . 1 . 1 = 1
            3 . 4 . (½x)     6 (½x)      (½x)      6             6

           atau langsung gunakan hal khusus ® Differensial
4. l i m   sin x - sin a = 0  (*)
   x ® 0       x - a        0

               2 cos ½(x+a) sin ½(x-a) = cos ½(x+a) . sin ½(x-a) =
                           x - a                         ½ (x - a )

            cos ½(x+a) . 1 = cos ½(a+a) . 1 = cos a
           atau langsung gunakan hal khusus ® Differensial

Defini 

Differensial (turunan) fungsi y = f(x) terhadap x didefinisikan sebagai :

dy =   l i m   f(x +
Dx) - f(x)
dx    
Dx Þ 0          Dx


(Perbandingan perubahan y yang disebabkan karena perubahan x, untuk perubahan x yang kecil sekali)

Notasi lain :  df/dx = f`(x) ; y`

RUMUS - RUMUS

1. FUNGSI ALJABAR
y = xn Þ dy/dx = nxn-1
2. FUNGSI TRIGONOMETRI
y = sin x    Þ dy/dx = cos x
y = cos x Þ dy/dx = - sin x
y = sin x  Þ dy/dx = sec²x
Sifat - sifat :

1. y = c (c=konstanta) Þ dy/dx = 0

2. y = c U(x) Þ dy /dx = c . U`(x)

3. y = U(x) ± V(x) Þ dy /dx = U`(x) ± V`(x)

4. Bentuk perkalian
    y = U(x) . V(x) Þ dy/dx = U`(x).V(x) + U(x).V`(x)

5. Bentuk pembagian
    y = U(x)   Þ   dy = U`(x).V(x) - U(x).V`(x)
         V(x)        dx                (V(x))²

6. Bentuk rantai
    y = f(U) dan U = g(x)  Þ  dy/dx = dy/du .du/dx

    y = (ax + b)n
    dy/dx = n(ax+b)n-1(a)

    y = sin (ax + b)
    dy/dx = (a) cos (ax+b)

    y = sinn (ax + b)
    dy/dx = n sinn-1(ax+b) [a cos (ax+b)]

Ket : Untuk menyelesaikan persoalan, sifat dan rumus-rumus ini         dikombinasikan



 

No comments:

Post a Comment

Archive

Sections

Blog Archive

Latest video-course

1-tag:Videos-800px-video

Campus

4-tag:Campus-500px-mosaic
TUTORIAL BLOG

Buka Semua | Tutup Semua

Header Background

Header Background
Header Background Image. Ideal width 1600px with.

Logo

Logo
Logo Image. Ideal width 300px.

Section Background

Section Background
Background image. Ideal width 1600px with.

Section Background

Section Background
Background image. Ideal width 1600px with.

Courses

6-latest-350px-course

About Me

Followers

Popular

Silahkan anda cari artikel disini

Pages

Hello! We’re Fenix Creative Photo Studio

Silahkan anda cari makalah disini
3-tag:Courses-65px

Popular Posts

Makalah Pendidikan Matematika Rumus - Rumus Trigonometri

PENJUMLAHAN DUA SUDUT (a + b)

sin(a + b)  = sin a cos b + cos a sin b
cos(a + b) = cos a cos b - sin a sin b
tg(a + b )   = tg a + tg b
                 1 - tg2a


SELISIH DUA SUDUT
(a - b)

sin(a - b)  = sin a cos b - cos a sin b
cos(a - b) = cos a cos b + sin a sin b
tg(a - b )   = tg a - tg b
                 1 + tg2a


SUDUT RANGKAP

sin 2
a  = 2 sin a cos a
cos 2
a = cos2a - sin2 a
= 2 cos2
a - 1
= 1 - 2 sin2
a
tg 2
a  =  2 tg 2a 
            1 - tg2
a
sin
a cos a = ½ sin 2a
cos2
a = ½(1 + cos 2a)
sin2
a  = ½ (1 - cos 2a)

Secara umum :


sin n
a  = 2 sin ½na cos ½na
cos n
a = cos2 ½na - 1
= 2 cos2 ½n
a - 1
= 1 - 2 sin2 ½n
a
tg n
a =   2 tg ½na  
           1 - tg2 ½n
a

JUMLAH SELISIH DUA FUNGSI YANG SENAMA


BENTUK PENJUMLAHAN
® PERKALIAN

sin
a + sin b   = 2 sin a + b    cos a - b
                                2              2
sin
a - sin b   = 2 cos a + b    sin a - b
                                2             2
cos
a + cos b = 2 cos a + b    cos a - b
                                 2              2
cos
a + cos b = - 2 sin a + b   sin a - b
                                  2             2

BENTUK PERKALIAN
® PENJUMLAHAN

2 sin
a cos b = sin (a + b) + sin (a - b)
2 cos
a sin b = sin (a + b) - sin (a - b)
2 cos
a cos b = cos (a + b) + cos (a - b)
- 2 sin a cos b = cos (a + b) - sin (a - b)

PENJUMLAHAN FUNGSI YANG BERBEDA

Bentuk a cos x + b sin x

Merubah bentuk a cos x + b sin x ke dalam bentuk K cos (x -
a)

a cos x + b sin x = K cos (x-
a)
dengan :                     
             K = Öa2 + b2 dan tg a = b/a Þ a = ... ?

Kuadran dari a ditentukan oleh kombinasi tanda a dan b sebagai berikut

I
II
III
IV
a
+
-
-
+
b
+
+
-
-
keterangan :
a = koefisien cos x
b = koefisien sin x

PERSAMAAN
I. sin x = sin
a Þ x1 = a + n.360°
                         x2 = (180° -
a) + n.360°



    cos x = cos
a Þ x = ± a + n.360°


tg x = tg a
Þ x = a + n.180°    (n = bilangan bulat)

II. a cos x + b sin x = c
     a cos x + b sin x = C
            K cos (x-
a) = C
               cos (x-
a) = C/K
     syarat persamaan ini dapat diselesaikan
     -1
£ C/K £ 1 atau K² ³ (bila K dalam bentuk akar)

misalkan C/K = cos
b
  cos (x -
a) = cos b
        (x -
a) = ± b + n.360° ® x = (a ± b) + n.360°

Limit Fungsi Trigonometri 
KETENTUAN

Untuk x <<< ( x
® 0 ) maka sin x » x
(x <<< kecil sekali ; » setara )

 l i m    sin x = 1             l i m   tg x = 1
x ® 0     x 
                   x ® 0    x
 l i m       x    = 1            l i m        x    = 1
x ® 0   sin  x 
                x ® 0     tg x

PERLUASAN
 l i m    sin ax = a/b       l i m     tg ax = a/b
x ® 0     bx 
                x ® 0     bx

 l i m       ax    = a/b       l i m       ax   = a/b

x ® 0   sin bx 
                x ® 0  tg bx

 l i m    sin ax = a/b       l i m     tg ax = a/b
x ® 0   sin bx 
                x ® 0 tg bx


 l i m    sin ax = a/b       l i m     tg ax = a/b
x ® 0   tg bx 
              x ® 0    sin bx

Rumus-rumus trigonometri yang sering digunakan untuk merubah fungsi:

cos x = sin (90° - x)
ctg x = tg (90° - x)
sin ax = 2 sin ½ax cos ½ax

cos ax = 1- 2 sin² ½ax
cos²x = 1 - sin²x



HAL-HAL KHUSUS


 l i m    axm + bxm-1 + ....   =
x ® ¥   pxn + qxn-1 + ...
¥    untuk m > n ;
a/p untuk m =n ;
0    untuk m < n
                                                   
l i m    Öax2 + bx + c  -    Ödx2 + ex + f
x ® ¥   
¥    untuk a > d ;
b-e untuk m =n ;
2Öa
-¥    untuk a < d
Bila salah satu suku belum berbentuk tanda akar maka dibentuk dengan cara mengkuadratkan kemudian menarik tanda akar.


DALIL L'HOSPITAL

Jika fungsi f dan g masing-masing terdifferensir pada titik x= a
dan f(a) = g(a) = 0 atau f(a) = g(a) = ¥ maka

 l i m    f(x)   = l i m    f(x)
x ® ¥  g(x)     x ® a   g(x)       


CONTOH LIMIT FUNGSI ALJABAR


1.  l i m   x2 - 5x + 6 = (3)2 - 5(3) + 6 = 0 
    x ® 3

2.  l i m    3x - 2   =  ¥   (*) Uraikan
    x ® ¥  2x + 1       ¥     

                 
x(3 - 2/x) = 3 - 2/x = 3 - 0 = 3
                 
x(2 - 1/x)    2 + 1/x   2 - 0    2
    
                 atau langsung gunakan hal khusus

3.  l i m    x2 - x - 1   =  ¥   (*) Uraikan
    x ® ¥   10x + 9         ¥     

                 
x(x - 1 - 1/x) = x - 1 - 1/x = ¥ - 1 - 0 = ¥ =¥
                 
x(10 - 9/x)       10 + 9/x        10 + 0      10

                 atau langsung gunakan hal khusus


4.  l i m    x2 - 3x + 2   =  0   (*) Uraikan
    x ® 2   x2 - 5x + 6       0    

                 
(x - 1)(x - 2) = (x - 1) = 2 - 1 = -1
                 (x - 3)(x - 2) = (x - 3) = 2 - 3

                 atau langsung gunakan hal khusus ® Differensial


5.  l i m    x3 - 3x2 + 3x - 1   =  0   (*) Uraikan
    x ® 1       x2 - 5x + 6           0    

                 
     (x - 1)3     = (x - 1)2 = (1 - 1)2 = 0
                 
(x - 1) (x - 5)     (x + 5)     (1 + 5)     6

                 atau langsung gunakan hal khusus ® Differensial


                                    
6.  l i m    Ö2 + x - Ö2x   =  0   (*) Hilangkan tanda akar dengan
    x ® 2       x - 2            0         mengalikan bentuk sekawan

                 
     (x - 1)3     = (x - 1)2 = (1 - 1)2 = 0 = 0
                 
(x - 1) (x - 5)     (x + 5)     (1 + 5)     6

                 atau langsung gunakan hal khusus ® Differensial


                                        
7.  l i m   (3x - Ö9x2 + 4x)  = ¥ - ¥  (*) Hilangkan tanda akar
    x ® ¥       
                                                              
     l i m   (3x - Ö9x2 + 4x )  = é 3x - Ö9x2 + 4x ù =  (*) Hilangkan tanda
    x ®  ¥   ë 3x - Ö9x2 + 4x  û             akar

     l i m   (9x2 - (9x2 + 4x)  = l i m            -4x                =
    x ®  ¥    3x + Ö(9x2 + 4x)      x ®  ¥ 3x + 3x Ö[1+(a/9x)]

     l i m            -4             = -4 = -2
    x ®  ¥    3 + 3Ö(1 + 0)             6     3

                 atau langsung gunakan hal khusus

CONTOH LIMIT FUNGSI TRIGONOMETRI

1. l i m   sin 2x = 0 (*)
   x ® 0  tg 3x     0

              sin 2x = 3x    2 = 1 . 1 . 2 = 2
              2x     tg 3x 3             3    3

2. l i m   1 - cos 2x = 0
   x ® 0      sin 2x      0

               1 - (1 - 2 sin² 2x) =      2 sin² x   =  sin x = tg x = 0
               2 sin x cos x        2 sin x cos       cos x

3. l i m   1 - cos x = 0
   x ® 0       3x²      0

               2 sin² (½x) = sin (½x) . sin (½x) = 1 . 1 . 1 = 1
            3 . 4 . (½x)     6 (½x)      (½x)      6             6

           atau langsung gunakan hal khusus ® Differensial
4. l i m   sin x - sin a = 0  (*)
   x ® 0       x - a        0

               2 cos ½(x+a) sin ½(x-a) = cos ½(x+a) . sin ½(x-a) =
                           x - a                         ½ (x - a )

            cos ½(x+a) . 1 = cos ½(a+a) . 1 = cos a
           atau langsung gunakan hal khusus ® Differensial

Defini 

Differensial (turunan) fungsi y = f(x) terhadap x didefinisikan sebagai :

dy =   l i m   f(x +
Dx) - f(x)
dx    
Dx Þ 0          Dx


(Perbandingan perubahan y yang disebabkan karena perubahan x, untuk perubahan x yang kecil sekali)

Notasi lain :  df/dx = f`(x) ; y`

RUMUS - RUMUS

1. FUNGSI ALJABAR
y = xn Þ dy/dx = nxn-1
2. FUNGSI TRIGONOMETRI
y = sin x    Þ dy/dx = cos x
y = cos x Þ dy/dx = - sin x
y = sin x  Þ dy/dx = sec²x
Sifat - sifat :

1. y = c (c=konstanta) Þ dy/dx = 0

2. y = c U(x) Þ dy /dx = c . U`(x)

3. y = U(x) ± V(x) Þ dy /dx = U`(x) ± V`(x)

4. Bentuk perkalian
    y = U(x) . V(x) Þ dy/dx = U`(x).V(x) + U(x).V`(x)

5. Bentuk pembagian
    y = U(x)   Þ   dy = U`(x).V(x) - U(x).V`(x)
         V(x)        dx                (V(x))²

6. Bentuk rantai
    y = f(U) dan U = g(x)  Þ  dy/dx = dy/du .du/dx

    y = (ax + b)n
    dy/dx = n(ax+b)n-1(a)

    y = sin (ax + b)
    dy/dx = (a) cos (ax+b)

    y = sinn (ax + b)
    dy/dx = n sinn-1(ax+b) [a cos (ax+b)]

Ket : Untuk menyelesaikan persoalan, sifat dan rumus-rumus ini         dikombinasikan



 

Share

Post a Comment